OpenlD for Verifiable Credentials

The next generation of OpenlD

Kristina Yasuda (SPRIND), Oliver Terbu (MATTR)

I OpenlD 1SO W3v®

NS

cooe- ETSI77 O\
-2¢2: DIF \\\%)

Protocol Layer Interoperability is Crucial

There was a need for the interoperable protocol layer that can support all of the credential
formats, key resolution mechanisms and trust frameworks.

Credential Credential
Issuance Presentati

—p
4 Wallet & 4 \Verifier

S—
—
—
—
-

/

User Interactions (authorization, consent, etc.)

\/

OID4VC: OpenlD for Verifiable Credentials set of
protocols

OpenlD for Verifiable OpenlD for Verifiable
Credential Issuance Presentations

OpeniD4VC High Assurance Interoperability Profile with SD-JWT VC (HAIP)

Issuer/ Verifier/
—— 2
Provider Wallet =y=}

A

User Interactions

OID4VC set of protocols also includes Self-Issued OpenlID Provider v2 (SIOPv2) and OpenlD4VP
over BLE. OpenID4VC high assurance interoperability profile for mdoc is being developed in ISO

We won a prize, European Identity & Cloud Award ;-)

z
-

ST \K
—
¥

T

T T N2

D
|
e

@

Global Adoption (selected use-cases)

National elD
Driving License [§55]
=

Diploma =

SELECTIVE
DISCLOSURE

ES®T

The European Digital
Identity Wallet, ARF v.1.4

mandates the usage of
OpenID4VC protocols

Digital Identities -
Mobile Driver's
License (mDL)

NIST National Cybersecurity
Center of Excellencez
is running a project implementing
and testing implementations for
OID4VP to present mdocs/mDL

A4 EERE
Trusted Web FRREHES IR IRERE

[REE]
(OpenlD for Verifiable Credentials
AV T H =YV ARTR KR

Japanese Government's
Trusted Web Project 3

has implemented OID4VC
protocols various use-cases

2] nccoe.nist.gov/projects/digital-identities-mdl
3] kantei.go.jp/ip/singi/digitalmarket/trusted_web/2023seika/files/004_report_oidf conformance_test.pdf

https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-presentation-profile/#workplace-credential
https://www.kantei.go.jp/jp/singi/digitalmarket/trusted_web/2023seika/files/004_report_oidf_conformance_test.pdf
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-issuance-profile/

Open Source libraries

Walt.id

Sphereon Microsoft

Swift: Rust:

tinyurl.com/2jejntsp github.com/spruceid/
| oidc4vci-rs

Kotlin: I

tinyurl.com/4bd5p3b Rust:

X tinyurl.com/rp35fsc8

Kotlin: Transcript:
github.com/walt-id/w tinyurl.com/2de634n
altid-ssikit a
I I
Kotlin Multiplatform: shorturl.at/yUnkA
shorturl.at/XtEXw N
shorturl.at/MHW1z

Impierce
Technologies

Javascript:
tinyurl.com/y945s5xu

Rust:
github.com/impierce/
openid4vc

Typescript: Go: Python: Dart:
github.com/animo/pa github.com/trustbloc/ tinyurl.com/56ft5m34 github.com/TalaoDA
radym-wallet vcs I O/AltMe

— Python:

github.com/trustbloc/ shorturl.at/Gxd2D

wallet-sdk

@ @ ()

_/ \o</ e/ \ 2/

Trustbloc Italian MOSIP EUDI
Government Reference

Kotlin/ Swift/
ReactNative:
github.com/mosip/tu
vali

Wallet
Implementation:
shorturl.at/rD7tf

https://github.com/walt-id/waltid-ssikit
https://github.com/walt-id/waltid-openid4vc
https://github.com/Sphereon-Opensource/SIOP-OpenID4VP
https://github.com/Sphereon-Opensource/OpenID4VCI-client
https://github.com/Sphereon-Opensource/ssi-sdk
https://github.com/microsoft/VerifiableCredential-SDK-Android
https://github.com/microsoft/VerifiableCredential-SDK-iOS
https://github.com/spruceid/oidc4vci-rs
https://github.com/spruceid/oidc4vci-issuer
https://api-pilot.ebsi.eu/docs/libraries
https://github.com/impierce/openid4vc
https://github.com/animo/paradym-wallet
https://github.com/trustbloc/vcs
https://github.com/trustbloc/wallet-sdk
https://github.com/italia/eudi-wallet-it-python
https://github.com/italia/eudi-wallet-it-pid-provider/tree/v.1.1.1
https://github.com/TalaoDAO/AltMe
https://github.com/mosip/tuvali
https://github.com/eu-digital-identity-wallet/.github/blob/main/profile/reference-implementation.md

OpenID4VC Conformance Tests

o Implementers can use conformance tests to ensure compliance to the

specification and interoperability with other implementations

Available In-progress
Tests for the Wallets for OpenlD4VP Tests for the Wallets for OpenlD4VCI
profiles with SD-JWT VC and mdocs profiles with SD-JWT VC and mdocs
(HAIP and 18013-7). Being updated to (HAIP and 23220-3). Projected to
the recent specifications changes. 10+ complete in the next 3 months

Wallets have already passed certification

OpenlD4VC Security Analysis

(@)

@)
»oecurity and Trust in OpenlID
for Verifiable Credentials
document describes the trust
architecture in OpenlD for
Verifiable Credentials
specifications, outlines security
considerations and requirements
for the components in an
ecosystem

@
Master Thesis ,,OpeniD for
Verifiable Credentials: formal

security analysis using the Web
Infrastructure Model“ published:

Next: OpenlD4VP and OpenlD4VCI

Exocutive Sum)
Exq Terminology
Open| Key Takeaway:
th .

dom vertasio oo OpenlD for Verifiable
User Benefitof T O e
base Shiftin the . F I I Q R—
Futer Credentials ollow

Demysti
i) i A Shift in the Trust Model Brought by for the nopen I D fOf'
over
e G Verifiable Credentials
taen Use-Cases .
sk VC Data M f b I
ey Verifiable
porta Case)
who, ISONIEC 18¢ . I ”
Credentials
for v Tochnical 101
as Sef Demystiying i
condt Extending h t
whitepaper
1500 OIDCAVP 1
ord OpeniDact
o Authoriz

Pre-Aut
i Credent June 23, 2022
crede] Koy Fosture Version: 2" Editor's Draft
) Conchuslon Lead Editors: Kristina Yasuda, Torsten Lodderstedt, David
D\he? Rafersnces; Chadwick, Kenichi Nakamura, Jo Vercammen

Appondix

Firat Examples Of
s 1SO/EC]
Nat AnonCr
into d
how i
flexi

https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf
https://openid.net/wordpress-content/uploads/2022/06/OIDF-Whitepaper_OpenID-for-Verifiable-Credentials-V2_2022-06-23.pdf

OpenlD for Verifiable
Credential Issuance

10

OpenlD for Verifiable Credential Issuance: Highlights
&

Status: First Implementer‘s draft published on April 1st!

|‘ Easy to use for developers

@ Various Security levels can be supported

4l Various business requirements and user-experiences
i

can be achieved

* Various trust frameworks and credential formats can
be supported

OAuth-protected API

User Authentication/Identification + Consent

s EEmEEmEEmEEmEEmEEmEmEmEmEmE—_m—_—_— ~
f \
1 © Wallet requests & User authorizes I
I credential issuance [
I < |
'\ @ access token(, refresh token) "
Credential >
lssuer [iniirntinliniotinlionntinlivntiativniiontivnlioniintiontipntin ~ Wallet
@ Wallet requests credential
<
'Q“ 3 Credential isissued [Z8&
Alice]

Credential issuance

OpenlID4VCI can be used in conjunction with any other OAuth extension RFC

Authorization Code Flow

Unlock App

E
(Eee)

Face ID

4 2 4 N))
6] — (@ Device Authenticator =)\
— ® ®E
(Q)EAA Provider Add Data? Wallet
Information {ojeas
'
(QIEAA Provider) —
(Loammore) foc= D
Offered data
(QEAA
C | |Ca== GEZE» 00
€ / J _ 4

Pre-Authorized Code Flow

Y Y —
Unlock App G) @
4 ~N
]
(Q)EAA Provider 5 \,‘n
3 - - o
e oo
0= 0=
L J
D
O eame |ccooo

OpenlD4VCI: updates

Optimizing Issuance
of Credential Batches

+ Fulfills a requirement to
issue multiple Credentials
with the same claim
values, but different
cryptographic materials to
achieve unlinkability
without using ZKP

Optimizes passing
multiple proofs for each
Credential Configuration
in the same Credential
Request

OpenlD4VCI: updates

Deferred
authori-zation
removed

« (‘authorization_pending’)
option was removed

* Due to the security
concerns around
long-lived authorization
code, and lack of
implementations of the
feature

Notification endpoint
introduced

* Enables the Wallet to
notify the Issuer about
(un)successful issuance
and deletion of the
Credential by the user to
improve UX and
Credential lifecycle
management

* A new Notification
Endpoint hosted by the
Issuer

OpenlD4VCI: topics under discussion

Clarify Wallet/Key attestations
during Issuance

How wallet/key attestations are
passed throughout the protocol
steps, what are the schemas for
those attestations, etc.

Discussing adding a
mechanism for the Issuer to
notify the wallet about certain
events

For example, process-related,
risk-related, lifecycle-related events

Optimizing number of
endpoints
What are pros and cons of having

separate Credential, Batch
Credential and Deferred Endpoints?

Issuer Metadata enhancements

Enabling specifying value types for
the parameters, dark-mode of
display parameters, etc.

OpenlD for Verifiable
Presentations

18

OpenlD for Verifiable Presentations: Highlights
&)

Status: 2nd Implementer‘s draft published in May 2023

Designed for highest degree of privacy (e.g. wallet does not need a
backend to store and transmit Credentials)

Various Security levels can be supported

Easy of use for developers

Presentation of multiple Credentials in one response supported

Various Wallet deployment models supported

m) e@ =

Various trust frameworks and credential formats can be supported

Same Device Presentation

Relying Party

Identify with Wallet

A /

Unlock App

0

(Ul

Face ID

Present Data?

Information

e 3
Relying Party
Purpose
N J
Required data
-
(Q)EAA

Report a problem

(@ Decline)
o

J

Back to Relying Party

A\ J

Relying Party

LRSS S <

N Y

Cross Device Presentation

Relying Party

oo
o=

Unlock App

fey
(Sl

Faon 1D

®

Present Data?
irformation

Relying Party

Purposa

Required data

(clEAn
Feporta prodlem

((%) Decline \/

Relying Party

RS

OpenlID4VP: updates

— Profile of OpenIlD4VP over Digital request_uri_method=post —
Credentials API
* Expected benefits: + Ability for the Wallet to negotiate its capabilities

and request Verifier to include wallet provided

1. Flexible and Privacy-preserving
nonce in the signed request object

credential-based wallet selection and
getting rid of custom schemes

2. Increasing security of cross-device,
cross-platform presentation of credentials;

3. Improved UX (user getting back to the
same browser);

4, Improved security (platform-provided
calling origin)

+ Defining how OpenlD4VP request can be
passed using digital credential API being defined
in W3C

OpenlD4VP: topics under discussion

Query Language

* Simplifying how the Verifier communicates to the Wallet requirements about the
Credentials and claims being requested

Transaction Data

* Designing an explicit mechanism how presentation of a particular Credential can
G be bound to a transaction specific data (dynamic linking)

* Flagship use-cases: payments confirmation, QES authorization

EUDI-Wallet | Team-Workshop | 22.05.2024 |

Any questions?

Mail:

N

mailto:kristina.yasuda@sprind.org
mailto:oliver.terbu@mattr.global

Backup

Verifiable Credentials

Verifiable Credentials

« A verifiable credential (VC) is a set of tamper-evident claims and metadata
about real life achievements, qualifications, or attributes that includes a
cryptographic proof created by the issuer of the credential.

o Examples of verifiable credentials is anything that is currently issued and
shared on paper form is a candidate for a verifiable credential + more

O Driving licence
O Health card
O Personal identity card

O Product passport

What is Decentralized |dentity?

e The User presenting the Identity data directly to the Verifier from the Wallet
o <> In the federated model where Identity data is sent directly from the IdP to the Verifier

e Usually expressed with the flow below:

Issuer | N el ~| Verifier

El H I 4 .
(Website) Credential v (user's device, Credential (Website)
cloud or hybrid)

Issuance Presentation

User Interactions

\ L/ /

Verifiable Credentials: Benefits

o ENnd-Users gain more privacy, and portability over their identity
information.

o Cheaper, faster, and more secure identity verification, when transforming
physical credentials into digital ones.

o Universal approach to handle identification, authentication, and
authorization in digital and physical space.

OpenlD for Verifiable
Credentials

Why Protocol Layer Interoperability is Crucial.

One entity needs to talk to the large the number of entities, to increase the value of “Decentralized
|dentity”.

Credential Credential
F Q Issuance F Q Presentation F Q
. R (J . R\
. R (J . R
’ A s J / 2 N
. R (J = . R
.) — (. J . R
4 N > F N 4 N
Wallet }
Issuer | | (users device, |« > Verlfl.er
(Website) cloud or (Website)
- hybrid) / - J
—l —-— —
User Interactions

\ Y /

Problems we identified and how we solved them

Problem

Solution

A lot of entirely new Protocols. (Hard to get
security right, steep learning curve)

Building upon currently widely used protocols:
OAuth 2.0 and OpenID Connect. (Secure, already
understood)

No clear winner among Credential Formats

Designing a protocol agnostic to the Credential
Formats.

No one way to do key management.

Designing a protocol agnostic to the key
management mechanism.

Participating entities cannot typically
establish trust upfront, using traditional
mechanisms.

Flexibility in Trust Management. Third Party Trust.

...S0 here comes OpenlD for Verifiable Credentials (OID4VC)!

OpenlD for Verifiable
Presentations

OpenlD for Verifiable
Credential Issuance

Self-Issued OP v2

(
Wallet P
(\Ilsesbusig) | Credential k (user's dovice, | Credential v (\V/Veer;ziteer)
cloud or hybrid))
Issuance _ Presentation

\ A

User Interactions

\ A/ /

Adoption (selected use-cases)

r@ (@ r j@%? r Woodgrove - Issuing Verified Employee
r@a ﬁ(@p ﬂﬁp o8 EUelD Wallet o2 % NIST} € 5
F@ﬂ p}j é,/@ﬂ National elD
}3 e -
National eID oriving Lcerce B Digital Identities -
Diploma 5 | meh Mobile Driver's
msuance @ | [License (mDL)
Travel < Y | e o et v
attestation attributes Barant 2 TOR " Q) »
B > @ ‘ "
EEYY7 -
. 4

The European Digital Identity NIST National Cybersecurity DIF JWT VC Issuance /

Wallety;, ARF v.1.3: “the EUDI Center of Excellenceypz is Presentation Profile ;31121 uses

Wallet Solution MUST support running a project implementing OID4VC protocols for the

OpenlD4VCI as an Issuance and testing implementations for enterprise identity use-cases:

protocol.” OID4VP to present mdocs/mDL. fraud prevention in B2B, B2E
scenarios.

[3] httos //identity foundation/jwt-vc-issuance-profile/ [4] https://identity. foundation/jwt-vc-presentation-profile/

https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-issuance-profile/
https://identity.foundation/jwt-vc-presentation-profile/
https://cloudsignatureconsortium.org/new-eu-eidas-regulation-a-quantum-leap-for-electronic-identity/
https://www.nccoe.nist.gov/projects/digital-identities-mdl
https://identity.foundation/jwt-vc-presentation-profile/#workplace-credential
https://identity.foundation/jwt-vc-issuance-profile/
https://identity.foundation/jwt-vc-presentation-profile/#workplace-credential

Open Source libraries

Walt.id 6. Impierce Technologies
o https://qithub.com/walt-id/waltid-ssikit (Kotlin) o https://qithub.com/impierce/openid4vc (Rust)
o https://github.com/walt-id/waltid-openid4vc (Kotlin Multiplatform) 7. Animo
Sphereon o https://qithub.com/animo/paradym-wallet (Typescript)
o https://github.com/Sphereon-Opensource/SIOP-OpenlD4VP 8. Trustbloc
(Typescript) o https://github.com/trustbloc/vcs (Go)
o https://github.com/Sphereon-Opensource/OpenlD4VCI-client o https://qithub.com/trustbloc/wallet-sdk (Go)
(Typescript) 9. ltalian Government
o https://github.com/Sphereon-Opensource/ssi-sdk (Typescript) o https://github.com/italia/eudi-wallet-it-python (Python)
Microsoft o https://qithub.com/italia/eudi-wallet-it-pid-provider/tree
o https://qithub.com/microsoft/VerifiableCredential-SDK-Android v.1.1.1 (Python)
(Kotlin) 10. AltMe
o https://qithub.com/microsoft/VerifiableCredential-SDK-iOS o https://github.com/TalaoDAO/AltMe (Dart)
(Swift) 11. MOSIP
Spruce o https://github.com/mosip/tuvali (Kotlin/Swift/ReactNative)
o https://qithub.com/spruceid/oidc4vci-rs (Rust) 12. EUDI Reference Wallet Implementation
o hitps:/github.com/spruceid/oidc4vci-issuer (Rust) o https://github.com/eu-digital-identity-wallet/.github/blob/me
EBSI n/profile/reference-implementation.md

o https://api-pilot.ebsi.eu/docs/libraries (Javascript)

https://github.com/walt-id/waltid-ssikit
https://github.com/walt-id/waltid-openid4vc/
https://github.com/Sphereon-Opensource/SIOP-OpenID4VP
https://github.com/Sphereon-Opensource/OpenID4VCI-client
https://github.com/Sphereon-Opensource/ssi-sdk
https://github.com/microsoft/VerifiableCredential-SDK-Android
https://github.com/microsoft/VerifiableCredential-SDK-iOS
https://github.com/spruceid/oidc4vci-rs
https://github.com/spruceid/oidc4vci-issuer
https://api-pilot.ebsi.eu/docs/libraries
https://github.com/impierce/openid4vc
https://github.com/animo/paradym-wallet
https://github.com/trustbloc/vcs
https://github.com/trustbloc/wallet-sdk
https://github.com/italia/eudi-wallet-it-python
https://github.com/italia/eudi-wallet-it-pid-provider/tree/v.1.1.1
https://github.com/italia/eudi-wallet-it-pid-provider/tree/v.1.1.1
https://github.com/TalaoDAO/AltMe
https://github.com/mosip/tuvali
https://github.com/eu-digital-identity-wallet/.github/blob/main/profile/reference-implementation.md
https://github.com/eu-digital-identity-wallet/.github/blob/main/profile/reference-implementation.md

OpenlD Foundation Certification for OID4VC
specs

A light-weight, low-cost, self-certification program to serve members, drive adoption
and promote high-quality implementations (since 2015~)
2,400+ total certifications to date!

Benefits (there are more!)

O Testers get direct support from the OIDF certification team

O Internationally recognized, award winning

O Updated as the specification evolves

Current progress

O Started development for OpenlD for Verifiable Presentations. initial focus is on testing wallets.

O OpenlD for Verifiable Credential Issuance planned

Things to know

O Strictly tests protocol specification conformance and does not test what happens inside the wallet

O Can be integrated in continuous development and deployment processes
O Tests are open source

OID4VC Formal Security Analysis

e “Security and Trust in OpenlD for Verifiable Credentials”

O Describes the trust architecture in OpenlD for Verifiable Credentials, outlines security
considerations and requirements for the components in an ecosystem.
e Results of the formal security analysis of OpenlD for VC protocols were also
presented at the OAuth Security Workshop in August: “Protocols are secure
under the assumptions made”.

Let us tell you more about the protocol

“OpenlD for Verifiable
Credentials” whitepaper

S

The World of “verifiable credentials”, in which OID4VCs

allows variety of c

wolces In th

VC Tech Stack

hoices that OpeniD4VC

Trust
Frame
works

Cryptosuites

enabies

_______________________ Any | 11 curves
ML wWlBcbib___ |
Identifier || Issuer/Verifie .C DI,D |
____________________ L__IETF .well-known{fiwt-issuer | X.509 |
. 3C DID I COSE_key I
_______________ M| || T e — | T
Status management W3C StatuslList2021 IETF \
................................ (JSON-LD) JWT/CWT Statdls List
Credential Format e IETF SD-JWT V/C mdocs §SO/IEC 18013-5)
WSl[_Sowi[_Di] (JWT)
T ACME
|Wa||et . OAY Atte on-Based tirer ISO/IEC
o V f 1 _______#mnttaa- o L 18013-7,
Aer|h|er L OAuth 2.0, X.509, DIDs, OpenlID Federation, etc. 23220-3,
uthentication 93220-4
... OIDF ORERDAVE " L oo

I OpenlD4VC over BLE

ISO/IEC 18013-5

OpenlD for Verifiable Credential Issuance

OpenlD for Verifiable Credential Issuance (Highlights)

- First Implementer’s draft published on April 1st!
- It's an OAuth-protected API

o Leverages existing OAuth features and implementations
o Easy of use for developers

- Supports various Security levels (including high security with hardware bound keys)
- Various business requirements supported (ex. remote and in-person provisioning)

- Different user-experiences can be achieved (multiple ways to initiate the flow)

- Issuer can check Wallet's capabilities & Wallet can discover Issuer metadata

- New Notification Endpoint - Wallet notifying the Issuer of un/successful issuance

- Open Batch Credential Endpoint request - response being updated

Protocol Flow

Credentia
I
Issuer

Alice

@ Wallet requests & User authorizes

(credential issuance

(D access token(, refresh token)

@ Wallet requests credential issuance

<€

@ Credential is issued

Wallet %
|

=8

Authorization Code Flow

Presentation Request

Wallet Marketplace

Credential Offer from

Wallet Selector/ QR ——

Code

P Credential Request

Do you want to get
your credential from
issuer.com?

Proceed

Web Browser

https:/fissuer.com https:/fissuer.com

(OAuth2
Authorization) Do you consent to
Request as a Please authenticate issue your
redirect) credential to Wallet
username J XYZ?
) Yes

Submit

i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
T >
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'

Y

Wallet XYZ

Congrats you have
your credential

Pre-Authorized Code Flow

Wallet XYZ Wallet XYZ

Do you want to get
. ~ your credential from
Credential Offer from issuer.com?

Wallet Selector / QR
Proceed | l C}

Congrats you have
your credential

\ 4

\4

Code

Authorization Code Flow (Overview)
s e |

i 1 get credential [

I authorization request
: (client_id, redirect_uri, authorization_details, ...)

Credential Issuer

! 3 authorization request] !
i = (client_id, redirect_uri, authorization_details, ...) |).
B N [1
user authentication/identification H
l<. 4 authorization response (code) e :
.5 authorization response (code) » |
| 6 token request (grant_type=authorization_code, code=<code>, ...) |
| | |
i I<..7._.‘_‘?.'.‘.€.'.‘. response (access_token, c monce,..) %
| | |
[| 8 prepare proof of possession [
| - |
: ' 9 credential request (format, type, proof))j
| .10 credential response (format, credential)]

i

User Agent | l Wallet I

Credential Issuer

Pre-Authorized Code Flow (Overview)

[t

e

1 request issuance

|
|
(WL, LS

1

................ S ————

Credential Issuer

’ Web Site ’ ’ Credential Issuance API

l Issuer gathers data required to issue creden

¢ N
tial L]

token request (grant_ty
pre-authorized_code=

3. token response (acce

| 6 prepare proof of posse

..........

. 2 show QR Code

!pe=un"n:ietf:params:oauth:grant—type:pre-authorized_code,
Reotlep e ping. o o >

|
ss_token, c_nonce, ...)

--------- B e L L L L L]

| I
ssion | '
| |
| |
| |
|

|
format, credential) I

‘ Web Site ’ Credential Issuance API

Credential Issuer metadata (1/2)

{

"credential issuer": "https://credential-issuer.example.com",
"authorization servers": ["https://server.example.com"],
"credential endpoint": "https://credential-issuer.example.com",

"batch credential endpoint":
"https://credential-issuer.example.com/batch credential",

"deferred credential endpoint":
"https://credential-issuer.example.com/deferred credential”,

"credential response encryption": {

"alg values supported" : [

"display": [
"ECDH-ES" {
1y "name": "Example University",
"enc values supported" : ["locale": "en-Us"
"A128GCM" }
4
1, {
"encryption required": false "name": "Example Université",

b "locale": "fr-FR"

Credential Issuer metadata (2/2)

"proof types supported": {
"Wt |
"proof signing alg values_supported": [
"credential configurations supported": { "ES256M

"UniversityDegreeCredential": ({]

"format": "jwt vc json", }
"scope": "UniversityDegree", ',
"cryptographic binding methods supported": ["display": [

"did:example" (
Iy "name": "University Credential",
"credential signing alg values supported": ["locale": "en-US",

"ES256" "logo": |

:I r

"credential definition":{

"url":
"https://university.example.edu/public/logo.png",
"type": | "alt text": "a square logo of a university"
by
"background color": "#12107c",

"VerifiableCredential",

"UniversityDegreeCredential"
1 "text color": "#FFFFFF"
"credentialSubject": { } B

"given name": {]

"display": [}
{)
"name": "Given Name", }

"locale": "en-US"

Credential Offer

openid-credential-offer://?credential offer uri=https%$3A%2F%2Fserver%2Ee

xample%2Ecom$2Fcredential-offer.json

{
"credential issuer": "https://credential-issuer.example.com",
"credential configuration ids": [
"UniversityDegreeCredential",
"org.is0.18013.5.1.mDL"
I

"grants": {
"urn:ietf:params:ocauth:grant-type:pre-authorized code": ({
"pre-authorized code": "0aKazRN8I0Ibtz0C7JuMn5",
"tx code": {
"length": 4,
"input mode": "numeric",
"description": "Please provide the one-time code that was

sent via e-mail"

}

Example: Credential Request - Authorization Details

GET /authorize?

response_type=code

&client id=s6BhdRkgt3

&code challenge=E9Melhoa20wvFrEMTJguCHaoeK1t8URWbuGJSstw-cM

&code challenge method=S256
&authorization details=%5B%7B%22type%22%3A%20%220penid credential%22%2C%20%
22credential configuration id%22%3A%20%22UniversityDegreeCredential%22%7D%5
D

&redirect uri=https%3A%2F%2Fclient.example.org%2Fcb

Host: server.example.com

Example: Credential Request - Scopes

GET /authorize?
response_type=code
&scope=UniversityDegreeCredential
&resource=https$3A%2F%2Fcredential-issuer.example.com
&client id=s6BhdRkgt3
&code challenge=E9Melhoa20wvFrEMTJguCHaoeK1t8URWbuGJSstw-cM
&code challenge method=S256
&redirect uri=https%$3A%2F%2Fclient.example.org%2Fcb

Host: server.example.com

Response

HTTP/1.1 302 Found
Location: https://Wallet.example.org/cb?
code=Splx10BeZQQYbYS6WxSbIA

Example: Token Request (authorized code)

POST /token HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3FOMzpnWDFmQmEOM2JW

grant type=authorization code

&code=Splx10BeZQQYbYSO6WxSbIA

&code verifier=dBjftJeZ4CVP-mBO92K27uhbUJUlplr wWl1gFWFOE]Xk
&redirect uri=https%3A%2F%2FWallet.example.org%2Fcb

Example: Token Request (pre-authorized code)

POST /token HTTP/1.1
Host: credential-issuer.example.com

Content-Type: application/x-www-form-urlencoded

grant type=urn:ietf:params:oauth:grant-type:pre-authorized code
&pre-authorized code=Splx10BeZQQYbYS6WxSbIA
&tx code=493536

Example: Token Response

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

"access_ token": "eyJhbGciOiJSUzIINiIsInR5cCI6Ikp..sHQ",
"token type": "bearer",

"expires in": 86400,

"c nonce": "tZignsnFbp",

"c nonce expires_in": 86400,

"authorization details": [

{

"type": "openid credential",
"credential configuration id": "UniversityDegreeCredential"
"credential identifiers": ["CivilEngineeringDegree-2023",

"ElectricalEngineeringDegree-2023"]

}

Example: Credential Issuance (format/type)

Request

POST /credential HTTP/1.1

Host: credential-issuer.example.com

Content-Type: application/json

Authorization: BEARER czZCaGRSa3FOMzpnWDFmQmFOM2JW

"format":"vc+sd-jwt",
"vct":"Identity",
"proof": {

"proof type":"jwt",

"Jwt": "eyJhbGciOiJFUZzIINiIsInR5cCI6ImMOWZWSpZDR2Y2ktcHIvb2Yrand0Iiw

Jhe0xQOmfIBCQz20xVjaM910DdIt5JX ztrcgd4nkglH9070fbugg"
}

Response

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

Pragma: no-cache

"credential" : "eyJhbGciOiAiRVMyNTYifQ.eyJfc2QiOiBbIl

gImVtYWlsIiwgInR1c3RAZXhhbXBsZS5jb20iXQ"

Example: Credential Issuance (identifier)

Request

POST /credential HTTP/1.1

Host: server.example.com

Content-Type: application/json

Authorization: BEARER czZCaGRSa3FO0MzpnWDFmQmEOM2 JW

"credential identifier": "CivilEngineeringDegree-2023",
"proof": {

"proof type": "jwt",

"Jwt":

"eyJ0eXA101JvcGVuaWQOdmNpLXByb2 ImK2p3dCIsImFsZyI6IkVTMjU2IiwiandrI
Jp7Imt0eSI6IkVDIiwiY3J2Ij0iUCOYNTYiLCJI4IjoiblVXQWIBAINYWml0aDhFN2k
xXOQU9kYXhPTF1GT3dNLVoyRXVNMDJUaXJUNCIsInkiOiJIc2tIVThCalVpMVUSWHEPN

IN3bWo4Z3dBS18weGtjRGpFV183MVNvcOVZInl9.eyJhdWQiOiJodHRwczovL2NyZW

Response

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store

Pragma: no-cache

"credential" : "eyJhbGciOiAiRVMyNTYifQ.eyJfc2QiOiBbIl

gImVtYWlsIiwgInR1c3RAZXhhbXBsZS5jb20iXQ"

Example: Issued Credential

iss": "https://credential-issuer.example.com",

"iat": 1516239022,

"exp": 1516247022,

"vet": "https://credentials.example.com/identity credential",

"osd": [
"UiuRGkTW7e 5UQauGeQRQAF8u3WYevS4FsO0IuB DgYM",
"tmP1XgOMID-oRXbUNHyoVZrc9Qkm8cwITohVyOV1UgQ",
"vTz0JI103v4k4pKIloT83Yzi33L1SdZ1WBPmsfJBefk"

1y

" sd alg": "sha-256",

"enf": |
"Jwk": |
"kty": "EC",
"crv": "P-256",
"x": "TCAER19Zvu30HF4j4W4vESVoHIP1ILi1D1ls7vCeGenc",

"y": "ZxJ1WWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jTOF2HZQ"

Wallet Attestation Architecture

3) Generate

e Differentiate Client and Client Instance Client Attestation
+ Clon Backend attests aClient Instance T
e Client backend may perform any number ‘

of security checks before issuing a Shen s J

key-bound attestation JWT to the client

instance, however, steps 2 and 4 are out .
2) Request Client

Attestation for
generated key

4) Respond with
generated Client

of scope Attestation

o Mechanisms of authentication

LT TR, =

S

e} Issuance process :
1) Generate

Client Instance Authorization Server

e Trust mechanism for the Client Backend Attestation Key | & inieraniian
. . using Client
public key is out of scope ; x Attestation and
f PoP for
""""""" authentication

5) Generate
Client Attestation
PoP

Wallet Attestation Architecture

e Proof of possession enabled client
authentication method

e Can be used to authenticate the key used to
bind to an access token via DPoP

e Direct mode of authentication between the
client instance and the authorization server
rather than a backend for front end pattern

e Avoids the client instance from having to
register with the AS via DCR

3) Generate
Client Attestation
Key trusted by the
authorization server for
w5 vir vensis FuErrrees --; the specific client

Client Backend J

A '
2) Request Client | : 4) Respond with
Attestation for | i generated Client

generated key | ! Attestation

1) Generate
Attestation Key |

Client Instance Authorization Server

6) Interaction
using Client
Attestation and
PoP for
authentication

5) Generate
Client Attestation
PoP

Example - Wallet Attestation

"alg": "ES256",
"kid": "11"

"iss": "https://client.example.com",
"sub": "https://client.example.com",
"nbf": 1300815780,
: ": 1300819380,

rcnf”: {
"Jwk": {

TNy DTSR B
KL

“ECT,

"crv": "P-256",

"x": "18wHLeIgWIwWVN6VD1Txgpqy2LszYkMf6J8njVAibvhM",
"y": "-VAdS4UalLMgP_4fY4j8ir7c11TX1FdAgcx5507TkcSA™

Example of Wallet Attestation from HAIP

}

“typ": "wallet-attestation+jwt”,
"alg": "ES256",
“ReIdBs T
"iss": "<identifier of the issuer of this wallet attestation>",
"sub"”: "<’'client_id of the OAuth client>",
"iat": 1516247022,
"exp": 1541493724,
“aal” “https://trust-list.eu/aal/high”,
"cnf":
"jwk": {
sty HECEY
SN R P-2 867
“x": "TCAER19Zvu30HF4j4W4vfSVoHIP1ILilD1ls7vCeGemc",
"y": "ZxjiWWbZMQGHVWKVQ4hbSIirsVfuecCE6t4jT9F2HZQ"

}

"key_type": "strong_box",
“user_authentication”: "system_pin”,

OpenlD for Verifiable Presentations

OpenlD for Verifiable Presentations (Highlights)

On a path to start Third Implementer’s draft
Designed for highest degree of privacy
Easy of use for developers
Supports various Security levels (e.g. mutual authentication among the parties)
Different user-experiences can be achieved (same-device and cross-device)
- Presentation of multiple Credentials supported
- Various Wallet deployment models supported
- All'local to a native app
Native app with cloud backend
- Web wallet
- New Ability for the Wallet to negotiate its capabilities and request Verifier to include wallet
provided nonce in signed request object
- New OpenlD4VP over Browser API in the works
- Open Optimization or the Replacement of the query language

Same Device Presentation

-

N

https://verifier.com

Wallet XYZ

g 71
[\

2\\
| €

)

.

B

Wallet XYZ

Do you want to
share an
Identity
Credential?

~

| https://verifier.com

Thanks for
registering!

!

Cross Device Presentation

Visit Verifier

Desktop
https://verifier.com https://verifier.com
P D 2

Register with
Wallet

Smartphone

Wallet XYZ

D

Wallet XYZ
Enter PIN

Fokk kR

Wallet XYZ

Do you want to
share
Identity

Credential?

Desktop

https://verifier.com

Thanks for
registering!

Same Device (Overview)

‘ User Agent ‘Veriﬁer ‘
: 1 use :
NN i >
. authorization request
! (client_id, nonce, redirect_uri, presentation_definition, state)

authorization request
i 7 (client_id, nonce, redirect_uri, presentation_definition, state)

|
|
|
|
e T peeeeeesesescecececscccececeeeeeeeeeeeae
|
|
|
|
|

4 authenticate and authorize Verifier

user authentication and credential selection/confirmation

.

8 validate presentation

User Agent ‘ Verifier ’

9 use presented credential

5 create verifiable presentation (credential)

P

""" 3 b

’ Wallet ‘

Cross-Device Flow (VP Token sent via HTTP POST)

‘Eﬂ‘ ’ Verifier ‘ ’ Verfier Response Endpoint ‘ ‘ Wallet Frontend ’

2 create transaction_id & state :
| 3 render QR code with signed presentation request |

AU OR GO, e —————————— -

S authenticate and authorize Verifier

-
N

6 create presentation (credential)

presentation response R

[7 . geiog .
. _ (vp_token, presentation_submission, state) .
| L U -

| | 8 get presentation response (transaction_id) . | :

| | presentation response i 1 .

: ‘ (vp_token, presentation_submission) ! : .

e ssmmoam /s » = = = = = = = = " " " " ®m ®m =" ®" " ®" ® s %, ®m ®m ®m @ @ ®wososssus=o;sEss= ™ E W EEEEEEEEEE AW EEEEEEE oA s s osom o *

! ' 10 validate presentation (including nonce)

' 11 use presented credential

|
— N

‘ User ’ \ Verifier ’ Verfier Response Endpoint | Wallet Frontend

Same Device (VP Token sent via HTTP POST + redirect)

‘ User AgentJ ‘ Verifier ‘ \ Verifier Backend ‘ ’ Wallet ‘
| 1 use > \

2 create transaction_id & state

__ (client_id, nonce, response_uri, presentation_definition, state)
I~

authorization request ‘ |

l 3 authorization request
' 7 (client_id, nonce, response_uri, presentation_definition, state) '

Y

(incl. nonce binding)

13 use presented credential

| ' | authenticate and
{ \ Y authorize Verifier
user authentication and credential selection/confirmation L\1
! X X create verifiable
i i i presentation (credential)
. ' ' |, postresponse .
. |) . (vp_token, presentation_submission, state) : redirect_uri
- |] '~
. < 8 response (response_code) : : .
) | 9 response (response_code) el | .
| x I -
. ¢ o 9et presentation response |
- l (transaction_id) @ .
. | > :
" | 11 presentation response | .
. | < K
® w m ®m ® F E E N E NN E NN W E NN E NN W E NN NN W ww ufwwww " % % ®m ®m ® m ® 8 w w sl E N E N EEEEE NN E N EEEEEEEEE NN s ww o nlww
; 12 validate presentation |

User Agent ‘ Verifier ‘ Verifier Backend ’ Wallet ‘

Presentation Request

presentation_definition

GET /authorize? "id":"mDL-sample-req",
response_type=vp token "input_descriptors": |
&client id=https%3A%2F%2Fclient.example.org%2Fcb { . _ .
s&redirect uri=https%3A%2F%2Fclient.example.org%2Fcb "ld : Of?-lso-18013-5-1-mDL '
spresentation_definition=... forTat :{)
&nonce=n-0S6 WzA2Mj HTTP/1.1 mso mdoc": {
Host: wallet.example.com "alg": [
"EQDSA",
"ES256"

by
by

"constraints": {

"limit disclosure":"required",
"fields": [
{
"path":[

"$['org.iso0.18013.5.1"']['family name']"
1,

"intent to retain":false

"path":[
"$['org.is0.18013.5.1"] ['driving privileges']"
1,

"intent to retain":false

Presentation Response

vp_token
HTTP/1.1 302 Found -
Location: https://client.example.org/cb# {
presentation_submission=... "status": 0,
&vp_token=. .. "version": "1.0",
"documents": [
{
. . . "docType": "org.iso.18013.5.1.mDL",
presentation_submission "deviceSigned”: |
{ "deviceAuth": {
"definition id": "mDL-sample-req", "deviceMac": [

<< {1: 5} >>,

"id": "org.iso.18013.5.1.mDL",
"descriptor map": [(3,
{ - null, h'A574C64F18902BFE18R742F17C581218F88EA279A
llid" : llmDLll,]
"format": "mso mdoc", b
"path": "$" - "nameSpaces": 24 (h'A0")

}I
] } "issuerSigned": {
} "issuerAuth": [
<< {1l: =7} >>,
{

33:
h'30820215308201BCA003020102021404AD06A30C1A6DCOEI3BEOE2ES8F78DCAFAT7907C23
5040613025A453059301306072A8648CE3D020106082A8648CE3D030107034200047C5545
E2000E9C46618C02202C1F778AD252285ED05D9B55469F1CB78D773671F30FE7AB8153719

}I
<<
24 (<<
{
"docType": "org.iso.18013.5.1.mDL",
"version": "1.0",

New request_uri method POST

- A new mechanism that allows the Wallet to provide to the Verifier details
about its technical capabilities. This enables the Verifier to generate a
request that matches the technical capabilities of that Wallet.

- New request_uri_method Authorization Request parameter is introduced.
When the value of request_uri_method is "post’, the Wallet can make an
HTTP POST request to the Verifier's request_uri endpoint with information
about its capabilities

- When request_uri_method is absent or has the value of "get’, or the Wallet
does not support new POST method, the Wallet continues with JWT-Secured
Authorization Request (JAR) [RFC9101].

Example: Authorization Request with
request_uri_method POST

Request

GET /authorize?
client id=client.example.org
&client id scheme=x509 san dns

&client metadata=...

&request uri=https%3A%2F%2Fclient.example.org%2Frequest%2Fvapofdql
217m41m68uep

&request_uri method=post

request_uri_method = post (2/2)
Same Device (Request URI POST + Direct POST + redirect)

Wallet User Agent ‘ Verifier ‘
1 use
...,.......,.......,.......,.......,.......,.......,.......,.......,.......,..)
2 authorization request
(client_id, request_uri, request_uri_method=post, [client_id_scheme])

authorization request

--- >
| 6 create and sign (and optionally encrypt) request object

signed (optionally encrypted) request object (client_id, client_id_scheme, wallet_nonce, nonce,
response_uri, presentation_definition, state) |

authenticate and
authorize Verifier

User authentication and Credential selection/confirmation i

request_uri_method = post (1/2)
Same Device (Request URI POST + Direct POST + redirect)

User authentication and Credential selection/confirmation I\‘
9 create credential presentation(s) associated with nonce \
10 POST response |
(vp_token(credential presentation(s)), presentation_submission, state) L
: >
L ! 11 check state, store vp_token
I | & create redirect_uri with response_code
B Y TS S
ARSI oo cocnsoneeesesnesseneesasnenestonts "
| 14 redirect (redirect_uri) !
| 15 presentation response
| (. ;
| 16 validate response
| (incl. response_code)
\ validate presentation
17 . 2
(incl. nonce binding)
18 use presented credential

’ Wallet ‘ User Agent ‘ Verifier ‘

OpenlD4VP over Browser API

Why?

- Getting rid of custom schemes in favor of a flexible and privacy
preserving model for Wallet selection based on request data.

- Secure cross device, and even cross-platform, presentation of
credentials.

- UX: guarantee that the user will end up on the same browser, where it
started.

- The web platform provides the calling origin (or the app package if
calling from an native app) that can be used as additional data point by
the Wallet

Browser API| Overview

SCENARIO
same-device
web-based verifier
native app wallet

1. Verifier site loaded in browser, request initiated

2. Web platform API request initiated ¢
3. Browser processes request and routes to the app platform &

4. App platform processes request and routes to wallet ¢

5. Wallet responds to request ¢
6. App platform sends response back to the browser ¢

7.Browser resolves the promise ¢

Verifier Backend

8. Verifier sends the responce to its backend

| 3

.
.
Py
3
.
.

Browser
(Web Platform)

App

Wallet
Native App

(App Platform)

App Platform APIs

Platform (OS Platform Services)

LOCAL DEVICE

standardized APl (W3C)

protocol-specific

platform-specific function API

platform-specific web translation API

standardized API (Other)

OpenlD4VP over Browser API proposal: unsigned request

const credential = await navigator.identity.get ({
digital: {
_ this is an OID4VP
providers: [{ request
protocol: "urn:openid.net:oid4vp",

request: JSON.stringify ({

"client id": "client.example.org", new client id scheme

"client id scheme": "web-origin",
"response type": "vp token",
Standard OID4VP Request
"nonce": "n-0S6 WzA2Mj",
"client metadata": {...},

"presentation definition": {...}

})

The Wallet receives

- The value of the “protocol” parameter above.

- The value of the “request” parameter above.

- “Additionally the API provides the calling origin (or the app package if
calling from an native app) to the wallet in a way that can't be spoofed by
the verifier" (thank you Lee)

Note: At the minimum, the Wallet gets the calling origin to identify the
Verifier.

Response

- The wallet
O validates the request / verifier’s trust framework

O prepares the vp_token and presentation _submission
o MAY/MUST encrypt the response

- The response is sent back through the Browser API

const { data } = response;

const response = new URLSearchParams (data);

- The Verifier performs standard OID4VP processing.

When external trust establishment mechanism is
needed

- Request is signed, using external trust establishment mechanisms

o Wallet validates the signature
o Wallet needs to be able to establish trust in the verifier (e.g. know the root cert, etc.)

- How replay is prevented:

- Verifiers signs over its origin. Browser provides origin available to it to the wallet. Wallet
compares the two.

- (if verifier does not know the capabilities of the wallet(s), it can send
multiple requests.)

OpenlD4VP over Browser API proposal: signed request

const credential = await navigator.identity.get ({
digital: {
_ this is an OID4VP
providers: [{ request
protocol: "urn:openid.net:oid4vp",

request: JSON.stringify ({
"client id":"https//client.example.org",

"client id scheme":"entity id",

"response_type": "vp_token", contains Verifier’s

"nonce": "n-0S6 WzA2MJ", public key used to
- encrypt the response

Standard OID4VP Request

"client metadata": {...},
"presentation definition":"...",

})

}]
Array. can contain
} multiple requests.

Request URI (signed request

‘ User ‘ ‘ Verifier Site ‘ lWeb Platform ‘ IApp Platform ‘

1 1 use '
> |

[Note that the signed request object contains the Verifier's origin. H

navigator.identity.get(!
2 protocol="urn:openid.net:oid4vp", '
request="client_id,[client_id_scheme,] request") _ |

forward request (

origin="example verifier.com",
protocol="urn:openid.net:oid4vp",
request="client_id,[client_id_scheme,] request")

5 use this wallet?

6 confirmation

4 select wallet

forward request (
origin="example..verifier.com",
protocol="urn:openid.net:oid4vp",
request="client_id,[client_id_scheme,] request")

‘ Wallet ‘

8 authenticate Verifier by validating request signature (including trust chain)

9 compare origin to origin in signed request

User authentication and Credential selection/confirmation

h

Request URI (signed request)

User authentication and Credential selectionjconfirmation

9 compare origin to origin in signed request

ﬁ

send response
13 (vp_token(credential presentation(s)),
presentation_submission, state)

send response
11 (vp_token(credential presentation(s)),
presentation_submission, state)

create and encrypt credential presentation(s)
associated with nonce

send response
12 (vp_token(credential presentation(s)),
presentation_submission, state)

14 decrypt response

15 check state

validate presentation
16 ;. phr
' (incl. nonce binding)

i 17 use presented credential

‘ User ‘ ‘Verifier Site

Web Platform App Platform

Wallet

Response

The wallet prepares the vp_token and presentation_submission
The wallet MAY/MUST encrypt the response
The response is sent back through the Browser API

const { data } = response;

const response = new URLSearchParams (data);

The Verifier performs standard OID4VP processing.

